Functional data clustering: a survey
نویسندگان
چکیده
منابع مشابه
Functional data clustering: a survey
The main contributions to functional data clustering are reviewed. Most approaches used for clustering functional data are based on the following three methodologies: dimension reduction before clustering, nonparametric methods using specific distances or dissimilarities between curves and model-based clustering methods. These latter assume a probabilistic distribution on either the principal c...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملClustering for functional data
This work proposes an unsupervised classification algorithm for curves. It extends the density based multivariate cluster approach to the functional framework. In particular, the modes of the small-ball probability are used as starting points to build the clusters. A simulation study is proposed.
متن کاملClustering multivariate functional data
Model-based clustering is considered for Gaussian multivariate functional data as an extension of the univariate functional setting. Principal components analysis is introduced and used to define an approximation of the notion of density for multivariate functional data. An EM like algorithm is proposed to estimate the parameters of the reduced model. Application on climatology data illustrates...
متن کاملPSO based Multidimensional Data Clustering: A Survey
Data clustering is considered as one of the most promising data analysis methods in data mining and on the other side KMeans is the well known partitional clustering technique. Nevertheless, K-Means and other partitional clustering techniques struggle with some challenges where dimension is the core concern. The different challenges associated with clustering techniques are preknowledge of init...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Data Analysis and Classification
سال: 2013
ISSN: 1862-5347,1862-5355
DOI: 10.1007/s11634-013-0158-y